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Abstract

Deep learning has advanced from fully connected architectures to structured models
organized into components, e.g., the transformer composed of positional elements,
modular architectures divided into slots, and graph neural nets made up of nodes.
The nature of structured models is that communication among the components
has a bottleneck, typically achieved by restricted connectivity and attention. In
this work, we further tighten the bottleneck via discreteness of the representations
transmitted between components. We hypothesize that this constraint serves as a
useful form of inductive bias. Our hypothesis is motivated by past empirical work
showing the benefits of discretization in non-structured architectures as well as our
own theoretical results showing that discretization increases noise robustness and
reduces the underlying dimensionality of the model. Building on an existing tech-
nique for discretization from the VQ-VAE, we consider multi-headed discretization
with shared codebooks as the output of each architectural component. One motivat-
ing intuition is human language in which communication occurs through multiple
discrete symbols. This form of communication is hypothesized to facilitate trans-
mission of information between functional components of the brain by providing a
common interlingua, just as it does for human-to-human communication. Our ex-
periments show that discrete-valued neural communication (DVNC) substantially
improves systematic generalization in a variety of architectures—transformers,
modular architectures, and graph neural networks. We also show that the DVNC is
robust to the choice of hyperparameters, making the method useful in practice.

1 Introduction

In AI, there has long been a tension between subsymbolic and symbolic architectures. Subsymbolic
architectures, like neural networks, utilize continuous representations and statistical computation.
Symbolic architectures, like production systems (Laird et al., 1986) and traditional expert systems,
use discrete, structured representations and logical computation. Each architecture has its strengths:
subsymbolic computation is useful for perception and control, symbolic computation for higher
level, abstract reasoning. A challenge in integrating these approaches is developing unified learning
procedures.

As a step toward bridging the gap, recent work in deep learning has focused on constructing structured
architectures with multiple components that interact with one another. For instance, graph neural
networks are composed of distinct nodes (Kipf et al., 2019; Scarselli et al., 2008; Kipf et al., 2018;
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Santoro et al., 2017; Raposo et al., 2017; Bronstein et al., 2017; Gilmer et al., 2017; Tacchetti et al.,
2018; Van Steenkiste et al., 2018), transformers are composed of positional elements (Bahdanau et al.,
2014; Vaswani et al., 2017), and modular models are divided into slots or modules with bandwidth
limited communication (Jacobs et al., 1991; Bottou and Gallinari, 1991; Goyal and Bengio, 2020;
Ronco et al., 1997; Reed and De Freitas, 2015; Lamb et al., 2021; Andreas et al., 2016; Rosenbaum
et al., 2017; Fernando et al., 2017; Shazeer et al., 2017; Rosenbaum et al., 2019).

Although these structured models exploit the discreteness in their architectural components, the
present work extends these models to leverage discreteness of representations, which is an essential
property of symbols. We propose to learn a common codebook that is shared by all components for
inter-component communication. The codebook permits only a discrete set of communicable values.
We hypothesize that communication based on the use and re-use of discrete symbols will provide two
benefits:

• Discrete symbols limit the bandwidth of representations whose interpretation needs to be
learned and synchronized across modules. It may therefore serve as a common language for
interaction and facilitate learning.

• The use of shared discrete symbols will promote systematic generalization by allowing for
the re-use of previously encountered symbols in new situations. This makes it easier to
hot-swap one component for another when new out-of-distribution (OOD) settings arise that
require combining existing components in novel ways.

Our work is inspired by cognitive science, neuroscience, and mathematical considerations. From the
cognitive science perspective, we can consider different components of structured neural architectures
to be analogous to autonomous agents in a distributed system whose ability to communicate stems
from sharing the same language. If each agent speaks a different language, learning to communicate
would be slow and past experience would be of little use when the need arises to communicate
with a new agent. If all agents learn the same language, each benefits from this arrangement. To
encourage a common language, we limit the expressivity of the vocabulary to discrete symbols
that can be combined combinatorially (Tomasello, 2009). From the neuroscience perspective, we
note that various areas in the brain, including the hippocampus (Sun et al., 2020; Quiroga et al.,
2005; Wills et al., 2005), the prefrontal cortex (Fujii and Graybiel, 2003), and sensory cortical areas
(Tsao et al., 2006) are tuned to discrete variables (concepts, actions, and objects), suggesting the
evolutionary advantage of such encoding, and its contribution to the capacity for generalization in the
brain. From a theoretical perspective, we present analysis suggesting that multi-head discretization
of inter-component communication increases model sensitivity and reduces underlying dimensions
(Section 2). These sources of inspiration lead us to the proposed method of Discrete-Valued Neural
Communication (DVNC).

Architectures like graph neural networks (GNNs), transformers, and slot-based or modular neural
networks consist of articulated specialist components, for instance, nodes in GNNs, positions in
transformers, and slots/modules for modular models. We evaluate the efficacy of DVNC in GNNs,
transformers, and in a modular recurrent architecture called RIMs. For each of these structured
architectures, we keep the original architecture and all of its specialist components the same. The
only change is that we impose discretization in the communication between components (Figure 1).

Our work is organized as follows. First, we introduce DVNC and present theoretical analysis showing
that DVNC improves sensitivity and reduces metric entropy of models (the logarithm of the covering
number). Then we explain how DVNC can be incorporated into different model architectures. And
finally we report experimental results showing improved OOD generalization with DVNC.

2 Discrete-Value Neural Communication and Theoretical Analysis

In this section, we begin with the introduction of Discrete-Value Neural Communication (DVNC)
and proceed by conducting a theoretical analysis of DVNC affects the sensitivity and metric entropy
of models. We then explain how DVNC can be used within several different architectures.

Discrete-Value Neural Communication (DVNC) The process of converting data with continuous
attributes into data with discrete attributes is called discretization (Chmielewski and Grzymala-Busse,
1996). In this study, we use discrete latent variables to quantize information communicated among
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(a) DVNC in Graph Neural
Network (b) DVNC in Transformer

(c) DVNC in Modular Recurrent Mecha-
nisms (RIMs)

Figure 1: Communication among different components in neural net models is discretized via a shared
codebook. In modular recurrent neural networks and transformers, values of results of attention are
discretized. In graph neural networks, communication from edges is discretized.

different modules in a similar manner as in Vector Quantized Variational AutoEncoder (VQ-VAE)
(Oord et al., 2017). Similar to VQ-VAE, we introduce a discrete latent space vector e ∈ RL×(m/G)

where L is the size of the discrete latent space (i.e., an L-way categorical variable), and m is the
dimension of each latent embedding vector ej . Here, L and m are both hyperparameters. In addition,
by dividing each target vector into G segments or discretization heads, we separately quantize each
head and concatenate the results (Figure 2). More concretely, the discretization process for each vector
h ∈ H ⊂ Rm is described as follows. First, we divide a vector h into G segments s1, s2, . . . , sG
with h = CONCATENATE(s1, s2, . . . , sG), where each segment si ∈ Rm/G with m

G ∈ N+. Second,
we discretize each segment si separately:

eoi = DISCRETIZE(si), where oi = argmin
j∈{1,...,L}

||si − ej ||.

Finally, we concatenate the discretized results to obtain the final discretized vector Z as

Z = CONCATENATE(DISCRETIZE(s1), DISCRETIZE(s2), ..., DISCRETIZE(sG)).

The multiple steps described above can be summarized by Z = q(h, L,G), where q(·) is the whole
discretization process with the codebook, L is the codebook size, and G is number of segments per
vector. It is worth emphasizing that the codebook e is shared across all communication vectors and
heads, and is trained together with other parts of the model.

The overall loss for model training is:

L = Ltask +
1

G

(
G∑
i

|| sg(si)− eoi ||22 + β

G∑
i

||si − sg(eoi)||22

)
(1)

where Ltask is the loss for specific task, e.g., cross entropy loss for classification or mean square error
loss for regression, sg refers to a stop-gradient operation that blocks gradients from flowing into its
argument, and β is a hyperparameter which controls the reluctance to change the code. The second
term

∑G
i || sg(si)− eoi ||22 is the codebook loss, which only applies to the discrete latent vector and

brings the selected eoi close to the output segment si. The third term
∑G
i ||si − sg(eoi)||22 is the

commitment loss, which only applies to the target segment si and trains the module that outputs si to
make si stay close to the chosen discrete latent vector eoi . We picked β = 0.25 as in the original
VQ-VAE paper (Oord et al., 2017). We initialized e using k-means clustering on vectors h with
k = L and trained the codebook together with other parts of the model by gradient descent. When
there were multiple h vectors to discretize in a model, the mean of the codebook and commitment
loss across all h vectors was used. Unpacking this equation, it can be seen that we adapted the vanilla
VQ-VAE loss to directly suit our discrete communication method (Oord et al., 2017). In particular,
the VQ-VAE loss was adapted to handle multi-headed discretization by summing over all the separate
discretization heads.

In the next subsection, we use the following additional notation. The function φ is arbitrary and
thus can refer to the composition of an evaluation criterion and the rest of the network following
discretization. Given any function φ : Rm → R and any family of sets S = {S1, . . . , SK} with
S1, . . . , SK ⊆ H, we define the corresponding function φSk by φSk (h) = 1{h ∈ Sk}φ(h) for all
k ∈ [K], where [K] = {1, 2, . . . ,K}. Let e ∈ E ⊂ RL×m be fixed and we denote by (Qk)k∈[LG]

all the possible values after the discretization process: i.e., q(h, L,G) ∈ ∪k∈[LG]{Qk} for all h ∈ H.
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Figure 2: In structured architectures, communica-
tion is typically vectorized. In DVNC, this commu-
nication vector is first divided into discretization
heads. Each head is discretized separately to the
nearest neighbor of a collection of latent codebook
vectors which is shared across all the heads. The
discretization heads are then concatenated back
into the same shape as the original vector.

Table 1: Communication with discretized values achieves a noise-sensitivity bound that is independent
of the number of dimensions m and network lipschitz constant ς̄k and only depends on the number of
discretization heads G and codebook size L.

Communication Type Example Sensitivity Bounds (Thm 1, 2)
Communication with continuous signals

is expressive but can take a huge range of novel
values, leading to poor systematic generalization m ∼ 105

O
(√

m ln(4
√
nm)+ln(2/δ)
2n + ς̄kRH√

n

)
Communication with multi-head

discrete-values is both expressive and sample efficient

“John owns a car”
G = 15
L = 30

O
(√

G ln(L)+ln(2/δ)
2n

)

Theoretical Analysis This subsection shows that adding the discretization process has two potential
advantages: (1) it improves noise sensitivity or robustness and (2) it reduces metric entropy. These are
proved in Theorems 1–2, illustrated by examples (Table 1), and explored in analytical experiments
using Gaussian-distributed vectors (Figure 3).

To understand the advantage on noise sensitivity or robustness, we note that there is an additional
error incurred by noise without discretization, i.e., the second term ς̄kRH/

√
n ≥ 0 in the bound of

Theorem 2 (ς̄k and RH are defined in Theorem 2). This term is defined to be the noise sensitivity (or
robustness) term. This term due to noise disappears with discretization in the bound of Theorem 1 as
the discretization process reduces the sensitivity to noise. This is because the discretization process
lets the communication become invariant to noise within the same category; e.g., the communication
is invariant to different notions of “cats”.

To understand the advantage of discretization on dimensionality, we can see that it reduces the metric
entropy of m ln(4

√
nm) without discretization (in Theorem 2) to that of G ln(L) with discretization

(in Theorem 1). As a result, the size of the codebook L affects the underlying dimension in a weak
(logarithmic) fashion, while the number of dimensions m and the number of discretization heads G
scale the underlying dimension in a linear way. Thus, the discretization process successfully lowers
the metric entropy for any n ≥ 1 as long as G ln(L) < m ln(4

√
m). This is nearly always the case

as the number of discretization heads G is almost always much smaller than the number of units m.
Intuitively, a discrete language has combinatorial expressiveness, making it able to model complex
phenomena, but still lives in a much smaller space than the world of unbounded continuous-valued
signals (as G can be much smaller than m).
Theorem 1. (with discretization) Let Sk = {Qk} for all k ∈ [LG]. Then, for any δ > 0, with
probability at least 1 − δ over an iid draw of n examples (hi)

n
i=1, the following holds for any

φ : Rm → R and all k ∈ [LG]: if |φSk (h)| ≤ α for all h ∈ H, then∣∣∣∣∣Eh[φSk (q(h, L,G))]− 1

n

n∑
i=1

φSk (q(hi, L,G))

∣∣∣∣∣ = O

(
α

√
G ln(L) + ln(2/δ)

2n

)
, (2)

where no constant is hidden in O.
Theorem 2. (without discretization) Assume that ‖h‖2 ≤ RH for all h ∈ H ⊂ Rm. Fix C ∈
argminC̄{|C̄| : C̄ ⊆ Rm,H ⊆ ∪c∈C̄B[c]} where B[c] = {x ∈ Rm : ‖x − c‖2 ≤ RH/(2

√
n)}. Let

Sk = B[ck] for all k ∈ [|C|] where ck ∈ C and ∪k{ck} = C. Then, for any δ > 0, with probability at
least 1− δ over an iid draw of n examples (hi)

n
i=1, the following holds for any φ : Rm → R and all

k ∈ [|C|]: if |φSk (h)| ≤ α for all h ∈ H and |φSk (h)−φSk (h′)| ≤ ςk‖h−h′‖2 for all h, h′ ∈ Sk, then∣∣∣∣∣Eh[φSk (h)]− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣ = O

(
α

√
m ln(4

√
nm) + ln(2/δ)

2n
+
ς̄kRH√
n

)
, (3)
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Figure 3: We perform empirical analysis on Gaussian vectors to build intuition for our theoretical
analysis. Expressiveness scales much faster as we increase discretization heads than as we increase
the size of the codebook. This can be seen when we measure the variance of a collection of Gaussian
vectors following discretization (left), and can also be seen when we plot a vector field of the effect
of discretization (center). Discretizing the values from an attention layer trained to select a fixed
Gaussian vector makes it more robust to novel Gaussian distractors (right). For more details, see
Appendix B.

where no constant is hidden in O and ς̄k = ςk
(

1
n

∑n
i=1 1{hi ∈ B[ck]}

)
.

The two proofs of these theorems use the same steps and are equally tight as shown in Appendix
D. Equation (3) is also as tight as that of related work as discussed in Appendix C.2. The set S is
chosen to cover the original continuous spaceH in Theorem 2 (via the ε-covering C ofH), and its
discretized space in Theorem 1. Equations (2)–(3) hold for all functions φ : Rm → R, including
the maps that depend on the samples (hi)

n
i=1 via any learning processes. For example, we can set

φ to be an evaluation criterion of the latent space h or the composition of an evaluation criterion
and any neural network layers that are learned with the samples (hi)

n
i=1. In Appendix A, we present

additional theorems, Theorems 3–4, where we analyze the effects of learning the map x 7→ h and the
codebook e via input-target pair samples ((xi, yi))

n
i=1.

Intuitively, the proof shows that we achieve the improvement in sample efficiency when G and L
are small, with the dependency on G being significantly stronger (details in Appendix). Moreover,
the dependency of the bound on the Lipschitz constant ςk is eliminated by using discretization. Our
theorems 1–2 are applicable to all of our models for recurrent neural networks, transformers, and
graph neural networks (since the function φ is arbitrary) in the following subsections.

Communication along edges of Graph Neural Network One model where relational information
is naturally used is in a graph neural network for modelling object interactions and predicting the next
time frame. We denote node representations by ζti , edge representations by εti,j , and actions applied
to each node by ati. Without DVNC, the changes of each nodes after each time step is computed by
ζt+1
i = ζti + ∆ζti , where ∆ζti = fnode(ζ

t
i , a

i
t,
∑
j 6=i ε

i,j
t ) and εti,j = fedge(ζ

t
i , z

t
j).

In this present work, we discretize the sum of all edges connected to each node with DVNC, as so:
∆ζti = fnode(ζ

t
i , a

i
t, q(

∑
j 6=i ε

i,j
t , L,G)).

Communication Between Positions in Transformers In a transformer model without DVNC, at
each layer, the scaled dot product multi-head soft attention is applied to allow the model to jointly
attend to information from different representation subspaces at different positions (Vaswani et al.,
2017) as:

Output = residual + MULTIHEADATTENTION(B,K, V ),

where MULTIHEADATTENTION(B,K, V ) = CONCATENATE(head1, head2, .....headn)WO and
headi = SOFTATTENTION(BWB

i ,KW
K
i , V W

V
i ). Here, WO,WB ,WK , and WV are projection

matrices, and B, K, and V are queries, keys, and values respectively.

In this present work, we applied the DVNC process to the results of the attention in the last two layers
of transformer model, as so:

Output = residual + q(MULTIHEADATTENTION(B,K, V ), L,G).

Communication with Modular Recurrent Neural Networks There have been many efforts to
introduce modularity into RNN. Recurrent independent mechanisms (RIMs) activated different
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modules at different time step based on inputs (Goyal et al., 2019). In RIMs, outputs from different
modules are communicated to each other via soft attention mechanism. In the original RIMs method,
we have ẑt+1

i = RNN(zti , x
t) for active modules, and ẑt+1

i′ = zti′ for inactive modules, where t
is the time step, i is index of the module, and xt is the input at time step t. Then, the dot product
query-key soft attention is used to communication output from all modules i ∈ {1, . . . ,M} such that
ht+1
i = SOFTATTENTION(ẑt+1

1 , ẑt+1
2 , ....ẑt+1

M ).

In this present work, we applied the DVNC process to the output of the soft attention, like so:
zt+1
i = ẑt+1

i + q(ht+1
i , L,G). Appendix E presents the pseudocode for RIMs with discretization.

3 Related Works

The Society of Specialists Our work is related to the theoretical nature of intelligence proposed by
Minsky (1988) and others (Braitenberg, 1986; Fodor, 1983), in which the authors suggest that an
intelligent mind can be built from many little specialist parts, each mindless by itself. Dividing model
architecture into different specialists been the subject of a number of research directions, including
neural module networks (Andreas et al., 2016)), multi-agent reinforcement learning (Zhang et al.,
2019) and many others (Jacobs et al., 1991; Reed and De Freitas, 2015; Rosenbaum et al., 2019).
Specialists for different computation processes have been introduced in many models such as RNNs
and transformers (Goyal et al., 2019; Lamb et al., 2021; Goyal et al., 2021b). Specialists for entities
or objects in fields including computer vision (Kipf et al., 2019). Methods have also been proposed to
taking both entity and computational process into consideration (Goyal et al., 2020). In a more recent
work, in addition to entities and computations, rules were considered when designing specialists
(Goyal et al., 2021a). Our Discrete-Valued Neural Communication method can be seen as introducing
specialists of representation into machine learning model.

Communication among Specialists Efficient communication among different specialist compo-
nents in a model requires compatible representations and synchronized messages. In recent years,
attention mechanisms are widely used for selectively communication of information among specialist
components in machine learning modes (Goyal et al., 2019, 2021b,a) and transformers (Vaswani et al.,
2017; Lamb et al., 2021).collective memory and shared RNN parameters have also been used for
multi-agent communication (Garland and Alterman, 1996; Pesce and Montana, 2020). Graph-based
models haven been widely used in the context of relational reasoning, dynamical system simulation
, multi-agent systems and many other fields. In graph neural networks, communication among
different nodes were through edge attributes that are learned from the nodes the edge is connecting
together with other information (Kipf et al., 2019; Scarselli et al., 2008; Bronstein et al., 2017;
Watters et al., 2017; Van Steenkiste et al., 2018; Kipf et al., 2018; Battaglia et al., 2018; Tacchetti
et al., 2018; Veerapaneni et al., 2019).Graph based method represent entities, relations, rules and
other elements as node, edge and their attributes in a graph (Koller and Friedman, 2009; Battaglia
et al., 2018). In graph architectures, the inductive bias is assuming the system to be learnt can be
represented as a graph. In this study, our DVNC introduces inductive bias that forces inter-component
communication to be discrete and share the same codebook. The combinatorial properties come
from different combinations of latent vectors in each head and different combination of heads in
each representation vector.While most of inter-specialist communication mechanisms operates in a
pairwise symmetric manner, Goyal et al. (2021b) introduced a bandwidth limited communication
channel to allow information from a limited number of modules to be broadcast globally to all
modules, inspired by Global workspace theory (Baars, 2019, 1993).our proposed method selectively
choose what information can communicated from each module. We argue these two methods are
complimentary to each other and can be used together, which we like to investigate in future studies.

4 Experiments

In this study we have two hypothesis: 1) The use of discrete symbols limits the bandwidth of commu-
nication. 2) The use of shared discrete symbols will promote systematic generalization.Theoretical
results obtained in section 2, agree with hypothesis 1. In order to verify hypothesis 2, in this sec-
tion, we design and conduct empirical experiments to show that discretization of inter-component
communication improves OOD generalization and model performance.
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Table 2: Performance of Transformer Models with Discretized Communication on the Sort-of-Clevr
Visual Reasoning Task.

Method Ternary Accuracy Binary Accuracy Unary Accuracy
Transformer baseline 57.25 ± 1.30 76.00 ± 1.41 97.75 ± 0.83

Discretized transformer (G=16) 61.33 ± 2.62 84.00 ± 2.94 98.00 ± 0.89
Discretized transformer (G=8) 62.67 ± 1.70 88.00 ± 0.82 98.75 ± 0.43
Discretized transformer (G=1) 58.50 ± 4.72 80.50 ± 7.53 98.50 ± 0.50

(a) 2D Shapes (b) 3D Shapes (c) Three-Body (d) Adding (e) Seq. MNIST

Figure 4: GNN models (a,b and c) and RIMs with DVNC (d and e) show improved OOD generaliza-
tion. Test data in OOD 1 to 3 are increasingly different from training distribution.

4.1 Communication along Edges of Graph Neural Networks

We first turn our attention to visual reasoning task using GNNs and show that GNNs with DVNC
have improved OOD generalization. In the tasks, the sequences of image frames in test set have
different distribution from data used for training. We set up the model in a identical manner as in
Kipf et al. 2019 (Kipf et al., 2019) except the introduction of DVNC. A CNN is used to to extract
different objects from images. Objects are represented as nodes and relations between pairs of objects
are represented as edges in the graph. The changes of nodes and edges can be learned by message
passing in GNN. The information passed by all edges connected to a node is discretized by DVNC
(see details in Section 2).

The following principles are followed when choosing and designing GNN visual reasoning tasks
as well as all other OOD generalization tasks in subsequent sections: 1) Communication among
different components are important for the tasks. 2) meaning of information communicated among
components can be described in a discrete manner. 3) In OOD setting,distributions of information
communicated among specialist components in test data also deviate from that in training data.

Object Movement Prediction in Grid World We begin with the tasks to predict object movement
in grid world environments. Objects in the environments are interacting with each other and their
movements are manipulated by actions applied to each object that give a push to the object in a
randomly selected direction . Machine learning models are tasked to predict next positions of all
objects in the next time step t+ 1 given their positions and actions in time step t. We can think of
this task as detecting whether an object can be pushed toward a direction. If object is blocked by
the environment or another object in certain direction, then it can not be moved in that direction.
Positions of objects are captures by nodes in GNN and the relative positions among different objects
can be communicated in a discrete manner via message passing through edges.

We adapted and modified the original 2D shapes and 3D shapes movement tasks from Kipf et al.
(2019) by introducing different number of objects in training or testing environment. In both 2D
and 3D shapes tasks ,five objects are available in training data, three objects are available in OOD-1
and only two objects are available in OOD-2. Our experimental results suggest that DVNC in
GNN improved OOD generalization in a statistically significant manner (Figure 4). In addition, the
improvement is robust across different hyperparameters G and L (Figure 5). Details of the visual
reasoning tasks set up and model hyperparameters can be found in Appendix.

Three-body Physics Object Movement Prediction Next, we turn our attention to a three-body-
physics environment in which three balls interacting with each other and move according to physical
laws in classic mechanics in a 2D environment. There are no external actions applied on the
objects. We adapted and modified the three-body-physics environment from (Kipf et al., 2019). In
OOD experiment, the sizes of the balls are different from the original training data. Details of the
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Table 3: Graph Neural Networks benefit from discretized communication on OOD generalization in
predicting movement in Atari games.

Game GNN (Baseline) GNN (Discretized) P-Value (vs. baseline) Game GNN (Baseline) GNN (Discretized) P-Value (vs. baseline)

Alien 0.1991 ± 0.0786 0.2876 ± 0.0782 0.00019 DoubleDunk 0.8680 ± 0.0281 0.8793 ± 0.0243 0.04444
BankHeist 0.8224 ± 0.0323 0.8459 ± 0.0490 0.00002 MsPacman 0.2005 ± 0.0362 0.2325 ± 0.0648 0.05220

Berzerk 0.6077 ± 0.0472 0.6233 ± 0.0509 0.06628 Pong 0.1440 ± 0.0845 0.2965 ± 0.1131 0.00041
Boxing 0.9228 ± 0.0806 0.9502 ± 0.0314 0.69409 SpaceInvaders 0.0460 ± 0.0225 0.0820 ± 0.0239 0.00960

experimental set up can be found in Appendix. Our experimental results show that GNN with DVNC
improved OOD generalization (Figure 4 ).

Movement Prediction in Atari Games Similarly, we design OOD movement prediction tasks
for 8 Atari games. Changes of each image frame depends on previous image frame and actions
applied upon different objects. A different starting frame number is used to make the testing set OOD.
GNN with DVNC showed statistically significant improvement in 6 out of 8 games and marginally
significant improvement in the other games (Table 3).

4.2 Communication Between Positions in Transformers

In transformer models, attention mechanism is used to communicate information among different
position. We design and conduct two visual reasoning tasks to understand if discretizing results
of attention in transformer models will help improve the performance (Section 2). In the tasks,
transformers take sequence of pixel as input and detect relations among different objects which are
communicated through attention mechanisms.

We experimented with the Sort-of-CLEVR visual relational reasoning task, where the model is tasked
with answering questions about certain properties of various objects and their relations with other
objects (Santoro et al., 2017). Each image in Sort-of-CLEVR contains randomly placed geometrical
shapes of different colors and shapes. Each image comes with 10 relational questions and 10 non-
relational questions. Nonrelational questions only consider properties of individual objects. On the
other hand, relational questions consider relations among multiple objects. The input to the model
consists of the image and the corresponding question. Each image and question come with a finite
number of possible answers and hence this task is to classify and pick the correct the answer(Goyal
et al., 2021b). Transformer models with DVNC show significant improvement (Table 2).

4.3 Communication with Modular Recurrent Neural Networks

Recurrent Independent Mechanisms(RIMs) are RNN with modular structures. In RIMs, units
communicate with each other using attention mechanisms at each time step. We discretize results
of inter-unit attention in RIMs (Section 2). We conducted a numeric reasoning task and a visual
reasoning task to understand if DVNC applied to RIMs improves OOD generalization.

We considered a synthetic adding task in which the model is trained to compute the sum of a sequence
of numbers followed by certain number of dummy gap tokens(Goyal et al., 2019). In OOD settings
of the task, the number of gap tokens after the target sequence is different in test set from training
data. Our results show that DVNC makes significnat improvement in the OOD task(Figure 4).

For further evidence that RIMs with DVNC can better achieve OOD generlization, we consider the
task of classifying MNIST digits as sequences of pixels (Krueger et al., 2016) and assay generalization
to images of resolutions different from those seen during training. Our results suggest that RIMs with
DVNC have moderately better OOD generalization than the baseline especially when the test images
are very different from original training data (Figure 4).

4.4 Analysis and Ablations

Discretizing Communication Results is Better than Discretizing other Parts of the Model:
The intuition is that discretizing the results of communication with a shared codebook encourages
more reliable and independent processing by different specialists. We experimentally tested this
key hypothesis on the source of the DVNC’s success by experimenting with discretizing other parts
of the model. For example, in RIMs, we tried discretizing the updates to the recurrent state and
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(a) 2D Shapes (G) (b) 2D Shapes (L) (c) 3D Shapes (G) (d) 3D Shapes (L)

(e) 2D Shapes(GNN) (f) 3D Shapes(GNN) (g) Adding Task(RIM)

Figure 5: Upper Row: Models with DVNC have improved OOD generalization in wide range of
hyperparameter settings. Red dots are performances of models with DVNC with different codebook
size (L) and number of heads (G). Black dashed lines are performance of baseline methods without
discretization. Lower row: (e) and (f) compare OOD generalization in HITs (higher is better) between
GNNs with results of communication discretized vs. edge states discretized. (g) Compares RIMs
model with results of communication discretized vs. other vectors discretized.

tried discretizing the inputs. On the adding task, this led to improved results over the baseline, but
performed much worse than discretizing communication. For GNNs we tried discretizing the input to
the communication (the edge hidden states) instead of the result of communication, and found that it
led to significantly worse results and had very high variance between different trials. These results
are in Figure 5.

VQ-VAE Discretization Outperforms Gumbel-Softmax: The main goal of our work was to
demonstrate the benefits of communication with discrete values, and this discretization could po-
tentially be done through a number of different mechanisms. Experimentally, we found that the
nearest-neighbor and straight-through estimator based discretization technique,similar to method
used in VQ-VAE, outperformed the use of a Gumbel-Softmax to select the discrete tokens (Figure 6
in Appendix). These positive results led us to focus on the VQ-VAE discretization technique, but
in principle other mechanisms could also be recruited to accomplish our discrete-valued neural
communication framework. We envision that DVCN should work complementarily with future
advances in learning discrete representations.

5 Discussion
With the evolution of deep architectures from the monolithic MLP to complex architectures with
specialized components, we are faced with the issue of how to ensure that subsystems can communi-
cate and coordinate. Communication via continuous, high-dimensional signals is a natural choice
given the history of deep learning, but our work argues that discretized communication results in
more robust, generalizable learning. Discrete-Valued Neural Communication (DVNC) achieves a
much lower noise-sensitivity bound while allowing high expressiveness through the use of multiple
discretization heads. This technique is simple and easy-to-use in practice and improves out-of-
distribution generalization. DVNC is applicable to all structured architectures that we have examined
where inter-component communication is important and the information to be communicated can be
discretized by its nature.

Limitations The proposed method has two major limitations. First, DVNC can only improve
performance if communication among specialists is important for the task. If the different components
do not have good specialization, then DVNC’s motivation is less applicable. Another limitation is
that the discretization process can reduce the expressivity of the function class, although this can
be mitigated by using a large value for G and L and can be partially monitored by the quantity of
training data (e.g., training loss) similarly to the principle of structural minimization. Hence future
work could examine how to combine discrete communication and continuous communication.
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Supplementary material for

Discrete-Valued Neural Communication
in Structured Architectures Enhances Generalization

Dianbo Liu, Alex Lamb, Kenji Kawaguchi,
Anirudh Goyal, Chen Sun, Michael C. Mozer, & Yoshua Bengio

A Additional theorems for theoretical motivations

In this appendix, as a complementary to Theorems 1–2, we provide additional theorems, Theorems
3–4, which further illustrate the two advantages of the discretization process by considering an
abstract model with the discretization bottleneck. For the advantage on the sensitivity, the error
due to potential noise and perturbation without discretization — the third term ξ(w, r′,M′, d) > 0
in Theorem 4 — is shown to be minimized to zero with discretization in Theorems 3. For the
second advantage, the underlying dimensionality of N(M′,d′)(r

′,H) + ln(N(M,d)(r,Θ)/δ) without
discretization (in the bound of Theorem 4) is proven to be reduced to the typically much smaller
underlying dimensionality of LG + ln(N(M,d)(r, E ×Θ) with discretization in Theorems 3. Here,
for any metric space (M, d) and subset M ⊆ M, the r-converging number of M is defined by
N(M,d)(r,M) = min

{
|C| : C ⊆ M,M ⊆ ∪c∈CB(M,d)[c, r]} where the (closed) ball of radius r at

centered at c is denoted by B(M,d)[c, r] = {x ∈M : d(x, c) ≤ r}. See Appendix C.1 for a simple
comparison between the bound of Theorem 3 and that of Theorem 4 when the metric spaces (M, d)
and (M′, d′) are chosen to be Euclidean spaces.

We now introduce the notation used in Theorems 3–4. Let qe(h) := q(h, L,G). The models are de-
fined by f̃(x) := f̃(x,w, θ) := (ϕw ◦hθ)(x) without the discretization and f(x) := f(x,w, e, θ) :=
(ϕw ◦ qe ◦ hθ)(x) with the discretization. Here, ϕw represents a deep neural network with weight
parameters w ∈ W ⊂ RD, qe is the discretization process with the codebook e ∈ E ⊂ RL×m, and
hθ represents a deep neural network with parameters θ ∈ Θ ⊂ Rζ . Thus, the tuple of all learnable
parameters are (w, e, θ). For the codebook space, E = E1 × E2 with E1 ⊂ RL and E2 ⊂ Rm.
Moreover, let J : (f(x), y) 7→ J(f(x), y) ∈ R be an arbitrary (fixed) function, hθ(x) ∈ H ⊂ Rm,
x ∈ X , and y ∈ Y = {y(1), y(2)} for some y(1) and y(2).

Theorem 3. (with discretization) Let CJ(w) be the smallest real number such that |J(ϕw(η), y)| ≤
CJ(w) for all (η, y) ∈ E2 × Y . Let ρ ∈ N+ and (M, d) be a matric space such that E ×Θ ⊆M.
Then, for any δ > 0, with probability at least 1− δ over an iid draw of n examples ((xi, yi))

n
i=1, the

following holds: for any (w, e, θ) ∈ W × E ×Θ,∣∣∣∣∣Ex,y[J(f(x,w, e, θ), y)]− 1

n

n∑
i=1

J(f(xi, w, e, θ), yi)

∣∣∣∣∣
≤ CJ(w)

√
4LG ln 2 + 2 ln(N(M,d)(r, E ×Θ)/δ)

n
+

√
Ld(w)2/ρ

n
,

where r = Ld(w)1/ρ−1
√

1
n and Ld(w) ≥ 0 is the smallest real number such that for all

(e, θ) and (e′, θ′) in E × Θ, |ψw(e, θ) − ψw(e′, θ′)| ≤ Ld(w)d((e, θ), (e′, θ′)) with ψw(e, θ) =
Ex,y[J(f(x), y)]− 1

n

∑n
i=1 J(f(xi), yi)

Theorem 4. (without discretization) Let C̃J(w) be the smallest real number such that |J((ϕw ◦
hθ)(x), y)| ≤ C̃J(w) for all (θ, x, y) ∈ Θ × X × Y . Let ρ ∈ N+ and (M, d) be a matric
space such that Θ ⊆ M. Let (M′, d′) be a matric space such that H ⊆ M′. Fix r′ > 0 and
C̄r′,d′ ∈ argminC{|C| : C ⊆ M′,H ⊆ ∪c∈CB(M′,d′)[c, r

′]}. Assume that for any c ∈ C̄r′,d′ , we
have |(J(ϕw(h), y) − (J(ϕw(h′), y)| ≤ ξ(w, r′,M′, d) for any h, h′ ∈ B(M′,d′)[c, r

′] and y ∈ Y .
Then, for any δ > 0, with probability at least 1− δ over an iid draw of n examples ((xi, yi))

n
i=1, the

following holds: for any (w, θ) ∈ W ×Θ,∣∣∣∣∣Ex,y[J(f̃(x,w, θ), y)]− 1

n

n∑
i=1

J(f̃(xi, w, θ), yi)

∣∣∣∣∣
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Figure 6: Performance on adding task (RIMs) with no discretization, Gumbel-Softmax discretiza-
tion, or VQ-VAE style discretization (ours). Test length=500 is in-distribution test result and test
length=1000 is out-of-distribution results.

≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(N(M,d)(r,Θ)/δ)

n
+

√
L̃d(w)2/ρ

n
+ ξ(w, r′,M′, d),

where r = L̃d(w)1/ρ−1
√

1
n and L̃d(w) ≥ 0 is the smallest real number such that for all θ and θ′ in

Θ, |ψ̃w(θ)− ψ̃w(θ′)| ≤ L̃d(w)d(θ, θ′) with ψ̃w(θ) = Ex,y[J(f̃(x), y)]− 1
n

∑n
i=1 J(f̃(xi), yi).

Note that we have CJ(w) ≤ C̃J(w) and Ld(w) ≈ L̃d(w) by their definition. For example, if we set
J to be a loss criterion, the bound in Theorem 4 becomes in the same order as and comparable to the
generalization bound via the algorithmic robustness approach proposed by the previous papers (Xu
and Mannor, 2012; Sokolic et al., 2017a,b), as we show in Appendix C.2.

B Additional Experiments

C Additional discussions on theoretical motivations

C.1 Simple comparison of Theorems 3 and 4 with Euclidean space

For the purpose of of the comparison, we will now consider the simple worst case with no additional
structure with the Euclidean space to instantiate N(M′,d′)(r

′,H), N(M,d)(r,Θ), and N(M,d)(r, E ×
Θ). It should be obvious that we can improve the bounds via considering metric spaces with additional
structures. For example, we can consider a lower dimensional manifold H in the ambient space
of Rm to reduce N(M′,d′)(r

′,H). Similar ideas can be applied for Θ and E × Θ. Furthermore,
the invariance as well as margin were used to reduce the bound on N(M′,d′)(r

′,X ) in previous
works (Sokolic et al., 2017a,b) and similar ideas can be applied for N(M′,d′)(r

′,H), N(M,d)(r,Θ),
and N(M,d)(r, E × Θ). In this regard, the discretization can be viewed as a method to minimize
N(M′,d′)(r

′,H) to easily controllable LG while minimizing the sensitivity term ξ(w, r′,M′, d) to
zero at the same time in Theorems 3 and 4.
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Suppose that for any y ∈ Y , the function h 7→ J(ϕw(h), y) is Lipschitz continuous as
|(J(ϕw(h), y) − (J(ϕw(h′), y)| ≤ ς(w)d(h, h′). Then, we can set ξ(w, r′,M′, d) = 2ς(w)r′

since d(h, h′) ≤ 2r′ for any h, h′ ∈ B(M′,d′)[c, r
′].

As an simple example, let us choose the metric space (M′, d′) to be the Euclidean space Rm
with the Euclidean metric and H ⊂ Rm such that ‖v‖2 ≤ RH for all v ∈ H. Then, we have
N(M′,d′)(r

′,H) ≤ (2RH
√
m/r′)m and we can set ξ(w, r′,M′, d) = 2ς(w)r′. Thus, by setting

r′ = RH/2, we can replace N(M′,d′)(r
′,H) by (4

√
m)m and set ξ(w, r′,M′, d) = ς(w)RH.

Similarly, let us choose the metric space (M, d) to be the Euclidean space with the Euclidean
metric and E ⊂ RLm and Θ ⊂ Rζ such that ‖v‖2 ≤ RE for all v ∈ E and ‖v‖2 ≤ RΘ for all
v ∈ Θ. This implies that ‖(vE , vθ)‖2 ≤

√
R2
E +R2

Θ. Thus, we haveN(M,d)(r,Θ) ≤ (2RΘ

√
ζ/r)ζ

and N(M,d)(r, E × Θ) ≤ (2
√
R2
E +R2

Θ

√
Lm+ ζ/r)Lm+ζ . Since r = L̃d(w)1/ρ−1

√
1
n and

r = Ld(w)1/ρ−1
√

1
n , we can replaceN(M,d)(r,Θ) by (2RΘL̃d(w)1−1/ρ

√
ζn)ζ andN(M,d)(r, E×

Θ) by (2Ld(w)1−1/ρ
√
R2
E +R2

Θ

√
(Lm+ ζ)n)Lm+ζ . By summarizing these and ignoring the

logarithmic dependency as in the standard Õ notation, we have the following bounds for Theorems 3
and 4:

(with discretization) CJ(w)

√
4LG + 2Lm+ 2ζ + 2 ln(1/δ)

n
+

√
Ld(w)2/ρ

n
,

and

(without discretization) C̃J(w)

√
4(4
√
m)m + 2ζ + 2 ln(1/δ)

n
+

√
L̃d(w)2/ρ

n
+ ς(w)RH,

where we used the fact that ln(x/y) = ln(x) + ln(1/y). Here, we can more easily see that the
discretization process has the benefits in the two aspects:

1. The discretization process improves sensitivity against noise and perturbations: i.e., it
reduces the sensitivity term ς(w)RH to be zero.

2. The discretization process reduces underlying dimensionality: i.e., it reduce the term
of 4(4

√
m)m to the term of 4LG + 2Lm. In practice, we typically have 4(4

√
m)m �

4LG+2Lm. This shows that using the discretization process withe codebook of size L×m,
we can successfully reduce the exponential dependency on m to the linear dependency on
m. This is a significant improvement.

C.2 On the comparison of Theorem 4 and algorithmic robustness

If we assume that the function x 7→ `(f̃(x), y) is Lipschitz for all y ∈ Y with Lipschitz constant
ςx(w) similarly to our assumption in Theorem 4, the bound via the algorithmic robustness in the
previous paper (Xu and Mannor, 2012) becomes the following: for any δ > 0, with probability at
least 1− δ over an iid draw of n examples ((xi, yi))

n
i=1, for any (w, θ) ∈ W ×Θ,∣∣∣∣∣Ex,y[`(f̃(x,w, θ), y)]− 1

n

n∑
i=1

[`(f̃(xi, w, θ), yi)]

∣∣∣∣∣ (4)

≤ ĈJ

√
4N(M′,d′)(r′,X ) ln 2 + 2 ln 1

δ

n
+ 2ςx(w)r′,

where ĈJ ≥ C̃J(w) for all w ∈ W and (M′, d′) is a metric space such that X ⊆M′. See Appendix
C.3. for more details on the algorithmic robustness bounds.

Thus, we can see that the dominant termN(M′,d′)(r
′,H) in Theorem 4 is comparable to the dominant

term N(M′,d′)(r
′,X ) in the previous study. Whereas the previous bound measures the robustness in

the input space X , the bound in Theorem 4 measures the robustness in the bottleneck layer space
H. When compared to the input space X , if the bottleneck layer space H is smaller or has more
structures, then we can haveN(M′,d′)(r

′,H) < N(M′,d′)(r
′,X ) and Theorem 4 can be advantageous

over the previous bound. However, Theorem 4 is not our main result as we have much tighter bounds
for the discretization process in Theorem 3 as well as Theorem 1.
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C.3 On algorithmic robustness

In the previous paper, algorithmic robustness is defined to be the measure of how much the loss value
can vary with respect to the perturbations of values data points (x, y) ∈ X × Y . More precisely,
an algorithm A is said to be (|Ω|, %(·))-robust if X × Y can be partitioned into |Ω| disjoint sets
Ω1, . . . ,Ω|Ω| such that for any dataset S ∈ (X × Y)m, all (x, y) ∈ S, all (x′, y′) ∈ X × Y , and all
i ∈ {1, . . . , |Ω|}, if (x, y), (x′, y′) ∈ Ωi, then

|`(f̃(x), y)− `(f̃(x′), y′)| ≤ %(S).

If algorithmA is (Ω, %(·))-robust and the codomain of ` is upper-bounded by M , then given a dataset
S, we have (Xu and Mannor, 2012) that for any δ > 0, with probability at least 1− δ,∣∣∣∣∣Ex,y[`(f̃(x), y)]− 1

n

n∑
i=1

[`(f̃(xi), yi)]

∣∣∣∣∣ ≤M
√

2|Ω| ln 2 + 2 ln 1
δ

n
+ %(S).

The previous paper (Xu and Mannor, 2012) further shows concrete examples of this bound for a case
where the function (x, y) 7→ `(f̃(x), y) is Lipschitz with Lipschitz constant ςx,y(w),∣∣∣∣∣Ex,y[`(f̃(x), y)]− 1

n

n∑
i=1

[`(f̃(xi), yi)]

∣∣∣∣∣ ≤M
√

2N(M′,d′)(r′,X × Y) ln 2 + 2 ln 1
δ

n
+ 2ςx,y(w)r′,

where (M′, d′) is a metric space such that X × Y ⊆ M′. Note that the Lipschitz assumption on
t he function (x, y) 7→ `(f̃(x), y) does not typically hold for the 0-1 loss on classification. For
classification, we can assume that the function x 7→ `(f̃(x), y) is Lipschitz instead, yielding equation
(4).

D Proofs

We use the notation of qe(h) := q(h, L,G) in the proofs.

D.1 Proof of Theorem 1

Proof of Theorem 1. Let Ik = {i ∈ [n] : qe(hi) = Qk}. By using the following equality,

Eh[φSk (qe(h))] = Eh[φSk (qe(h))|qe(h) = Qk] Pr(qe(h) = Qk) = φ(Qk) Pr(qe(h) = Qk),

we first decompose the difference into two terms as

Eh[φSk (qe(h))]− 1

n

n∑
i=1

φSk (qe(hi)) (5)

= φ(Qk)

(
Pr(qe(h) = Qk)− |Ik|

n

)
+

(
φ(Qk)

|I
k
|

n
− 1

n

n∑
i=1

φSk (qe(hi))

)
.

The second term in the right-hand side of (5) is further simplified by using

1

n

n∑
i=1

φSk (qe(hi)) =
1

n

∑
i∈Ik

φ(qe(hi)),

and

φ(Qk)
|I

k
|

n
=

1

n

∑
i∈Ik

φ(qe(hi)),

as

φ(Qk)
|I

k
|

n
− 1

n

n∑
i=1

φSk (qe(hi)) = 0.
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Substituting these into equation (5) yields∣∣∣∣∣Eh[φSk (qe(h))]− 1

n

n∑
i=1

φSk (qe(hi))

∣∣∣∣∣ =

∣∣∣∣φ(Qk)

(
Pr(qe(h) = Qk)− |Ik|

n

)∣∣∣∣
≤ |φ(Qk)|

∣∣∣∣Pr(qe(h) = Qk)− |Ik|
n

∣∣∣∣ . (6)

Let pk = Pr(qe(h) = Qk) and p̂ = |Ik|
n . Consider the random variable Xi = 1{qe(hi) = Qk} with

the pushforward measure of the random variable hi under the map hi 7→ 1{qe(hi) = Qk}. Here, we
have that Xi ∈ {0, 1} ⊂ [0, 1]. Since e is fixed and h1, . . . , hn are assumed to be iid, the Hoeffding’s
inequality implies the following: for each fixed k ∈ [LG],

Pr(|pk − p̂k| ≥ t) ≤ 2 exp
(
−2nt2

)
.

By solving δ′ = 2 exp
(
−2nt2

)
, this implies that for each fixed k ∈ [LG], for any δ′ > 0, with

probability at least 1− δ′,

|pk − p̂k| ≤
√

ln(2/δ′)

2n
.

By taking union bounds over k ∈ [LG] with δ′ = δ
LG , we have that for any δ > 0, with probability at

least 1− δ, the following holds for all k ∈ [LG]:

|pk − p̂k| ≤
√

ln(2LG/δ)

2n
.

Substituting this into equation (6) yields that for any δ > 0, with probability at least 1 − δ, the
following holds for all k ∈ [LG]:∣∣∣∣∣Eh[φSk (qe(h))]− 1

n

n∑
i=1

φSk (qe(hi))

∣∣∣∣∣ ≤ |φ(Qk)|
√

ln(2LG/δ)

2n
= |φ(Qk)|

√
G ln(L) + ln(2/δ)

2n
.

D.2 Proof of Theorem 2

Proof of Theorem 2. Let (M′, d′) be a matric space such that H ⊆ M′. Fix r′ > 0 and C̄ ∈
argminC{|C| : C ⊆ M′,H ⊆ ∪c∈CB(M′,d′)[c, r

′]} such that |C̄| < ∞. Fix an arbitrary ordering
and define ck ∈ C̄r′,d′ to be the k-the element in the ordered version of C̄ in that fixed ordering
(i.e., ∪k{ck} = C̄r′,d′). Let B[c] = B(M′,d′)[c, r

′] and S = {B[c1],B[c2], . . . ,B[c|C̄|]}. Suppose
that

∣∣φSk (h)− φSk (h′)
∣∣ ≤ ξk(r′,M′, d) for any h, h′ ∈ B[ck] and k ∈ [|C̄|], which is shown to be

satisfied later in this proof. Let Ik = {i ∈ [n] : hi ∈ B[ck]} for all k ∈ [|C̄|]. By using the following
equality,

Eh[φSk (h)] = Eh[φSk (h)|h ∈ B[ck]] Pr(h ∈ B[ck]),

we first decompose the difference into two terms as∣∣∣∣∣Eh[φSk (h)]− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣ (7)

≤
∣∣∣∣Eh[φSk (h)|h ∈ B[ck]]

(
Pr(h ∈ B[ck])− |Ik|

n

)∣∣∣∣+

∣∣∣∣∣Eh[φSk (h)|h ∈ B[ck]]
|Ik|
n
− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣
The second term in the right-hand side of (7) is further simplified by using

1

n

n∑
i=1

φSk (hi) =
1

n

∑
i∈Ik

φSk (hi),

and

Eh[φSk (h)|h ∈ B[ck]]
|Ik|
n

=
1

n

∑
i∈Ik

Eh[φSk (h)|h ∈ B[ck]],
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as ∣∣∣∣∣Eh[φSk (h)|h ∈ B[ck]]
|Ik|
n
− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣
=

∣∣∣∣∣ 1n ∑
i∈Ik

(
Eh[φSk (h)|h ∈ B[ck]]− φSk (hi)

)∣∣∣∣∣
≤ 1

n

∑
i∈Ik

sup
h∈B[ck]

∣∣φSk (h)− φSk (hi)
∣∣ ≤ |Ik|

n
ξk(r′,M′, d).

Substituting these into equation (7) yields∣∣∣∣∣Eh[φSk (h)]− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣
≤
∣∣∣∣Eh[φSk (h)|h ∈ B[ck]]

(
Pr(h ∈ B[ck])− |Ik|

n

)∣∣∣∣+
|Ik|
n
ξk(r′,M′, d)

≤ |Eh[φ(h)|h ∈ B[ck]]|
∣∣∣∣(Pr(h ∈ B[ck])− |Ik|

n

)∣∣∣∣+
|Ik|
n
ξk(r′,M′, d), (8)

Let pk = Pr(h ∈ B[ck]) and p̂ = |Ik|
n . Consider the random variable Xi = 1{h ∈ B[ck]} with the

pushforward measure of the random variable hi under the map hi 7→ 1{h ∈ B[ck]}. Here, we have
that Xi ∈ {0, 1} ⊂ [0, 1]. Since B[ck] is fixed and h1, . . . , hn are assumed to be iid, the Hoeffding’s
inequality implies the following: for each fixed k ∈ [|C̄|],

Pr(|pk − p̂k| ≥ t) ≤ 2 exp
(
−2nt2

)
.

By solving δ′ = 2 exp
(
−2nt2

)
, this implies that for each fixed k ∈ [|C̄|], for any δ′ > 0, with

probability at least 1− δ′,

|pk − p̂k| ≤
√

ln(2/δ′)

2n
.

By taking union bounds over k ∈ [|C̄|] with δ′ = δ
|C̄| , we have that for any δ > 0, with probability at

least 1− δ, the following holds for all k ∈ [|C̄|]:

|pk − p̂k| ≤
√

ln(2|C̄|/δ)
2n

=

√
ln(|C̄|) + ln(2/δ)

2n
.

Substituting this into equation (8) yields that for any δ > 0, with probability at least 1 − δ, the
following holds for all k ∈ [|C̄|]:∣∣∣∣∣Eh[φSk (h)]− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣
≤ |Eh [φ(h)|h ∈ B[ck]]|

√
ln(N(M′,d′)(r′,H)) + ln(2/δ)

2n

+ ξk(r′,M′, d)

(
1

n

n∑
i=1

1{hi ∈ B[ck]}

)
,

where we used |Ik| =
∑n
i=1 1{hi ∈ B[ck]}. Let us now choose the metric space (M′, d′) to be the

Euclidean space Rm with the Euclidean metric and H ⊂ Rm such that ‖v‖2 ≤ RH for all v ∈ H.
Then, we have N(M′,d′)(r

′,H) ≤ (2RH
√
m/r′)m and we can set ξ(w, r′,M′, d) = 2ςkr

′. This is
because that the function h 7→ φSk (h) is Lipschitz continuous as |φSk (h)− φSk (h′)| ≤ ςkd(h, h′), and
because d(h, h′) ≤ 2r′ for any h, h′ ∈ B(M′,d′)[ck, r

′]. Thus, by setting r′ = RH/(2
√
n), we can

replace N(M′,d′)(r
′,H) by (4

√
nm)m and set ξ(w, r′,M′, d) = ςkRH/

√
n.

This yields∣∣∣∣∣Eh[φSk (h)]− 1

n

n∑
i=1

φSk (hi)

∣∣∣∣∣
19



≤ |Eh [φ(h)|h ∈ B[ck]]|
√
m ln(4

√
nm) + ln(2/δ)

2n
+
ςkRH√
n

(
1

n

n∑
i=1

1{hi ∈ B[ck]}

)
.

D.3 Proof of Theorem 3

In the proof of Theorem 3, we write f(x) := f(x,w, e, θ) when the dependency on (w, e, θ) is clear
from the context.
Lemma 1. Fix θ ∈ Θ and e ∈ E. Then for any δ > 0, with probability at least 1 − δ over an iid
draw of n examples ((xi, yi))

n
i=1, the following holds for any w ∈ W:∣∣∣∣∣Ex,y[J(f(x,w, e, θ), y)]− 1

n

n∑
i=1

J(f(x,w, e, θ), yi)

∣∣∣∣∣ ≤ CJ(w)

√
4LG ln 2 + 2 ln(1/δ)

n
.

Proof of Lemma 1. Let Ik,y = {i ∈ [n] : (qe ◦ hθ)(xi) = Qk, yi = y}. Using Ex,y[J(f(x), y)] =∑LG

k=1

∑
y′∈Y Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′] Pr((qe ◦ hθ)(x) = Qk ∧ y = y′), we

first decompose the difference into two terms as

Ex,y[J(f(x), y)]− 1

n

n∑
i=1

J(f(xi), yi) (9)

=
LG∑
k=1

∑
y′∈Y

Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′]

(
Pr((qe ◦ hθ)(x) = Qk ∧ y = y′)− |Ik,y

′ |
n

)

+

LG∑
k=1

∑
y′∈Y

Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′]
|Ik,y′ |
n
− 1

n

n∑
i=1

J(f(xi), yi)

 .

The second term in the right-hand side of (9) is further simplified by using

1

n

n∑
i=1

J(f(x), y) =
1

n

LG∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

J(f(xi), yi),

and

Ex,y[J(f(x), y)|(qe ◦ hθ)(x)

= Qk, y = y′]
|Ik,y′ |
n

=
1

n

∑
i∈Ik,y′

Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′],

as

LG∑
k=1

∑
y′∈Y

Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′]
|Ik,y′ |
n
− 1

n

n∑
i=1

J(f(xi), yi)

=
1

n

LG∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

(Ex,y[J(f(x), y)|(qe ◦ hθ)(x) = Qk, y = y′]− J(f(xi), yi))

=
1

n

LG∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

(J(ϕw(Qk), y′)− (J(ϕw(Qk), y′)) = 0

Substituting these into equation (9) yields

Ex,y[J(f(x), y)]− 1

n

n∑
i=1

J(f(xi), yi)
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=

LG∑
k=1

∑
y′∈Y

J(ϕw(Qk), y′)

(
Pr((qe ◦ hθ)(x) = Qk ∧ y = y′)− |Ik,y

′ |
n

)

=

2LG∑
k=1

J(vk)

(
Pr(((qe ◦ hθ)(x), y) = vk)− |Ik|

n

)
,

where the last line uses the fact that Y = {y(1), y(2)} for some (y(1), y(2)), along with the additional
notation Ik = {i ∈ [n] : ((qe ◦ hθ)(xi), yi) = vk}. Here, vk is defined as vk = (ϕw(Qk), y(1)) for
all k ∈ [LG] and vk = (ϕw(ek−LG), y(2)) for all k ∈ {LG + 1, . . . , 2LG}.
By using the bound of |J(ϕw(η), y)| ≤ CJ(w),∣∣∣∣∣Ex,y[J(f(x), y)]− 1

n

n∑
i=1

J(f(xi), yi)

∣∣∣∣∣
=

∣∣∣∣∣∣
2LG∑
k=1

J(vk)

(
Pr(((qe ◦ hθ)(x), y) = vk)− |Ik|

n

)∣∣∣∣∣∣
≤ CJ(w)

2LG∑
k=1

∣∣∣∣Pr(((qe ◦ hθ)(x), y) = vk)− |Ik|
n

∣∣∣∣ .
Since |Ik| =

∑n
i=1 1{((qe ◦ hθ)(xi), yi) = vk} and (θ, e) is fixed, the vector (|I1|, . . . , |I2LG |)

follows a multinomial distribution with parameters n and p = (p1, ..., p2LG), where pk = Pr(((qe ◦
hθ)(x), y) = vk) for k = 1, . . . , 2LG. Thus, by using the Bretagnolle-Huber-Carol inequality (van
der Vaart and Wellner, 1996, A6.6 Proposition), we have that with probability at least 1− δ,∣∣∣∣∣Ex,y[J(f(x), y)]− 1

n

n∑
i=1

J(f(xi), yi)

∣∣∣∣∣ ≤ CJ(w)

√
4LG ln 2 + 2 ln(1/δ)

n
.

Proof of Theorem 3. Let Ĉr,d ∈ argminC
{
|C| : C ⊆ M, E ×Θ ⊆ ∪c∈CB(M,d)[c, r]}. Note that if

N(M,d)(r, E ×Θ) =∞, the bound in the statement of the theorem vacuously holds. Thus, we focus
on the case of N(M,d)(r, E × Θ) = |Ĉr,d| < ∞. For any (w, e, θ) ∈ W × E × Θ, the following
holds: for any (ê, θ̂) ∈ Ĉr,d,

|ψw(e, θ)| =
∣∣∣ψw(ê, θ̂) + ψw(e, θ)− ψw(ê, θ̂)

∣∣∣
≤
∣∣∣ψw(ê, θ̂)

∣∣∣+
∣∣∣ψw(e, θ)− ψw(ê, θ̂)

∣∣∣ . (10)

For the first term in the right-hand side of (10), by using Lemma 1 with δ = δ′/N(M,d)(r, E ×Θ)
and taking union bounds, we have that for any δ′ > 0, with probability at least 1− δ′, the following
holds for all (ê, θ̂) ∈ Ĉr,d,∣∣∣ψw(ê, θ̂)

∣∣∣ ≤ CJ(w)

√
4LG ln 2 + 2 ln(N(M,d)(r, E ×Θ)/δ′)

n
. (11)

By combining equations (10) and (11), we have that for any δ′ > 0, with probability at least 1− δ′,
the following holds for any (w, e, θ) ∈ W × E ×Θ and any (ê, θ̂) ∈ Ĉr,d:

|ψw(e, θ)| ≤ CJ(w)

√
4LG ln 2 + 2 ln(N(M,d)(r, E ×Θ)/δ′)

n
+
∣∣∣ψw(e, θ)− ψw(ê, θ̂)

∣∣∣ .
This implies that for any δ′ > 0, with probability at least 1 − δ′, the following holds for any
(w, e, θ) ∈ W × E ×Θ:

|ψw(e, θ)| ≤ CJ(w)

√
4LG ln 2 + 2 ln(N(M,d)(r, E ×Θ)/δ′)

n
+ min

(ê,θ̂)∈Ĉr,d

∣∣∣ψw(e, θ)− ψw(ê, θ̂)
∣∣∣ .

(12)
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For the second term in the right-hand side of (12), we have that for any (w, e, θ) ∈ W × E ×Θ,

min
(ê,θ̂)∈Ĉr,d

∣∣∣ψw(e, θ)− ψw(ê, θ̂)
∣∣∣ ≤ Ld(w) min

(ê,θ̂)∈Ĉr,d
d((e, θ), (ê, θ̂)) ≤ Ld(w)r.

Thus, by using r = Ld(w)1/ρ−1
√

1
n , we have that for any δ′ > 0, with probability at least 1 − δ′,

the following holds for any (w, e, θ) ∈ W × E ×Θ:

|ψw(e, θ)| ≤ CJ(w)

√
4LG ln 2 + 2 ln(N(M,d)(r, E ×Θ)/δ′)

n
+

√
Ld(w)2/ρ

n
. (13)

Since this statement holds for any δ′ > 0, this implies the statement of this theorem.

D.4 Proof of Theorem 4

In the proof of Theorem 3, we write f̃(x) := f̃(x,w, θ) when the dependency on (w, θ) is clear from
the context.
Lemma 2. Fix θ ∈ Θ. Let (M′, d′) be a matric space such that H ⊆ M′. Fix r′ > 0 and
C̄r′,d′ ∈ argminC{|C| : C ⊆ M′,H ⊆ ∪c∈CB(M′,d′)[c, r

′]}. Assume that for any c ∈ C̄r′,d′ , we
have |(J(ϕw(h), y) − (J(ϕw(h′), y)| ≤ ξ(w, r′,M′, d) for any h, h′ ∈ B(M′,d′)[c, r

′] and y ∈ Y .
Then for any δ > 0, with probability at least 1− δ over an iid draw of n examples ((xi, yi))

n
i=1, the

following holds for any w ∈ W:∣∣∣∣∣Ex,y[J(f̃(x,w, θ), y)]− 1

n

n∑
i=1

J(f̃(x,w, θ), yi)

∣∣∣∣∣
≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(1/δ)

n
+ ξ(w, r′,M′, d).

Proof of Lemma 2. Note that if N(M′,d′)(r
′,H) = ∞, the bound in the statement of the theorem

vacuously holds. Thus, we focus on the case of N(M′,d′)(r
′,H) = |C̄r′,d′ | < ∞. Fix an arbitrary

ordering and define ck ∈ C̄r′,d′ to be the k-the element in the ordered version of C̄r′,d′ in that fixed
ordering (i.e., ∪k{ck} = C̄r′,d′ ).

Let Ik,y = {i ∈ [n] : hθ(xi) ∈ B(M′,d′)[ck, r
′], yi = y} for all k × y ∈ [|C̄r′,d′ |] × Y . Using

Ex,y[J(f̃(x), y)] =
∑|C̄r′,d′ |
k=1

∑
y′∈Y Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r

′], y = y′] Pr(hθ(x) ∈
B(M′,d′)[ck, r

′] ∧ y = y′), we first decompose the difference into two terms as∣∣∣∣∣Ex,y[J(f̃(x), y)]− 1

n

n∑
i=1

J(f̃(xi), yi)

∣∣∣∣∣ (14)

=

∣∣∣∣∣∣
|C̄r′,d′ |∑
k=1

∑
y′∈Y

Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r
′], y = y′]

(
Pr(hθ(x) ∈ B(M′,d′)[ck, r

′] ∧ y = y′)− |Ik,y
′ |

n

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
|C̄r′,d′ |∑
k=1

∑
y′∈Y

Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r
′], y = y′]

|Ik,y′ |
n
− 1

n

n∑
i=1

J(f̃(xi), yi).

∣∣∣∣∣∣
The second term in the right-hand side of (14) is further simplified by using

1

n

n∑
i=1

J(f̃(x), y) =
1

n

|C̄r′,d′ |∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

J(f̃(xi), yi),

and

Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r
′], y = y′]

|Ik,y′ |
n

=
1

n

∑
i∈Ik,y′

Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r
′], y = y′],
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as ∣∣∣∣∣∣
|C̄r′,d′ |∑
k=1

∑
y′∈Y

Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r
′], y = y′]

|Ik,y′ |
n
− 1

n

n∑
i=1

J(f̃(xi), yi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
|C̄r′,d′ |∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

(
Ex,y[J(f̃(x), y)|hθ(x) ∈ B(M′,d′)[ck, r

′], y = y′]− J(f̃(xi), yi)
)∣∣∣∣∣∣

≤ 1

n

|C̄r′,d′ |∑
k=1

∑
y′∈Y

∑
i∈Ik,y′

sup
h∈B(M′,d′)[ck,r

′]

|J(ϕw(h, y′)− J(ϕw(hθ(xi)), y
′)| ≤ ξ(w).

Substituting these into equation (14) yields∣∣∣∣∣Ex,y[J(f̃(x), y)]− 1

n

n∑
i=1

J(f̃(xi), yi)

∣∣∣∣∣
≤
∣∣∣∣∣∣
|C̄r′,d′ |∑
k=1

∑
y′∈Y

Ex,y[J(f̃(x), y′)|hθ(x) ∈ B(M′,d′)[ck, r
′]]

(
Pr(hθ(x) ∈ B(M′,d′)[ck, r

′] ∧ y = y′)− |Ik,y
′ |

n

)∣∣∣∣∣∣+ ξ(w)

≤ C̃J(w)

2|C̄r′,d′ |∑
k=1

∣∣∣∣(Pr((hθ(x), y) ∈ vk)− |Ik|
n

)∣∣∣∣+ ξ(w),

where the last line uses the fact that Y = {y(1), y(2)} for some (y(1), y(2)), along with the additional
notation Ik = {i ∈ [n] : (hθ(xi), yi) ∈ vk}. Here, vk is defined as vk = B(M′,d′)[ck, r

′]×{y(1)} for
all k ∈ [|C̄r′,d′ |] and vk = B(M′,d′)[ck−|C̄r′,d′ |, r

′]× {y(2)} for all k ∈ {|C̄r′,d′ |+ 1, . . . , 2|C̄r′,d′ |}.

Since |Ik| =
∑n
i=1 1{(hθ(x), y) ∈ vk} and θ is fixed, the vector (|I1|, . . . , |I2|C̄r′,d′ ||) follows a

multinomial distribution with parameters n and p = (p1, ..., p2|C̄r′,d′ |), where pk = Pr((hθ(x), y) ∈
vk) for k = 1, . . . , 2|C̄r′,d′ |. Thus, by noticing |C̄r′,d′ | = N(M′,d′)(r

′,H) and by using the
Bretagnolle-Huber-Carol inequality (van der Vaart and Wellner, 1996, A6.6 Proposition), we have
that with probability at least 1− δ,∣∣∣∣∣Ex,y[J(f̃(x), y)]− 1

n

n∑
i=1

J(f̃(xi), yi)

∣∣∣∣∣
≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(1/δ)

n
+ ξ(w).

Proof of Theorem 4. Let Ĉr,d ∈ argminC
{
|C| : C ⊆ M,Θ ⊆ ∪c∈CB(M,d)[c, r]}. Note that if

N(M,d)(r,Θ) = ∞, the bound in the statement of the theorem vacuously holds. Thus, we fo-
cus on the case of N(M,d)(r,Θ) = |Ĉr,d| <∞. For any (w, θ) ∈ W ×Θ, the following holds: for
any θ̂ ∈ Ĉr,d, ∣∣∣ψ̃w(θ)

∣∣∣ =
∣∣∣ψ̃w(θ̂) + ψ̃w(θ)− ψ̃w(θ̂)

∣∣∣
≤
∣∣∣ψ̃w(θ̂)

∣∣∣+
∣∣∣ψ̃w(θ)− ψ̃w(θ̂)

∣∣∣ . (15)

For the first term in the right-hand side of (15), by using Lemma 2 with δ = δ′/N(M′,d′)(r
′,Θ) and

taking union bounds, we have that for any δ′ > 0, with probability at least 1− δ′, the following holds
for all θ̂ ∈ Ĉr,d,∣∣∣ψ̃w(θ̂)

∣∣∣ ≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(N(M,d)(r,Θ)/δ′)

n
+ ξ(w, r′,M′, d). (16)
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By combining equations (15) and (16), we have that for any δ′ > 0, with probability at least 1− δ′,
the following holds for any (w, θ) ∈ W ×Θ and any θ̂ ∈ Ĉr,d:∣∣∣ψ̃w(θ)

∣∣∣
≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(N(M,d)(r,Θ)/δ′)

n
+
∣∣∣ψ̃w(θ)− ψ̃w(θ̂)

∣∣∣+ ξ(w, r′,M′, d).

This implies that for any δ′ > 0, with probability at least 1 − δ′, the following holds for any
(w, θ) ∈ W ×Θ:∣∣∣ψ̃w(θ)

∣∣∣ ≤ CJ(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(N(M,d)(r,Θ)/δ′)

n
(17)

+ min
θ̂∈Ĉr,d

∣∣∣ψ̃w(θ)− ψ̃w(θ̂)
∣∣∣+ ξ(w, r′,M′, d).

For the second term in the right-hand side of (17), we have that for any (w, θ) ∈ W ×Θ,

min
θ̂∈Ĉr,d

∣∣∣ψ̃w(θ)− ψ̃w(θ̂)
∣∣∣ ≤ L̃d(w) min

θ̂∈Ĉr,d
d(θ, θ̂) ≤ Ld(w)r.

Thus, by using r = L̃d(w)1/ρ−1
√

1
n , we have that for any δ′ > 0, with probability at least 1 − δ′,

the following holds for any (w, θ) ∈ W ×Θ:∣∣∣ψ̃w(θ)
∣∣∣ ≤ C̃J(w)

√
4N(M′,d′)(r′,H) ln 2 + 2 ln(N(M,d)(r,Θ)/δ′)

n
(18)

+

√
L̃d(w)2/ρ

n
+ ξ(w, r′,M′, d).

Since this statement holds for any δ′ > 0, this implies the statement of this theorem.

E Method Details

Algorithm 1: Discretization of inter-module communication in RIM
N is sample size,T is total time step, M is number of modules in the RIM model
initialization;
for i in 1..M do

initialize z0
i ;

end
Training;
for n in 1..N do

for t in 1..T do
INPUTATTENTION = SOFTATTENTION(zt1, z

t
2, ..., z

t
M , x

t);
if i in top K of INPUTATTENTION then

ẑt+1
i = RNN(zti , x

t);
else

ẑt+1
i′ = zti′ ;

end
for i in 1..M do

Discretization; ht+1
i = SOFTATTENTION(ẑt+1

1 , ẑt+1
2 , ....ẑt+1

M )

zt+1
i = ẑt+1

i + q(ht+1
i , L,G);

end
end
Calculate task loss, codebook loss and commitment loss according to equation 1
Update model parameter Θ together with discrete latent vectors in codebook e ∈ RLXD;

end

24



E.1 Task Details

2D shape environment is a 5X5 grid world with different objects of different shapes and colors placed
at random positions.Each location can only be occupied by one object.The underlying environment
dynamics of 3D shapes are the same as in the 2D dateset, and only the rendering component was
changed (Kipf et al., 2019). In OOD setting, the total number of objects are changed for each
environment. We used number of objects of 4 (validation), 3 (OOD-1) and 2 (OOD-2). We did not
put in more than 5 objects because the environment will be too packed and the objects can hardly
move.

The 3-body physics simulation environment is an interacting system that evolves according to
physical laws.There are no actions applied onto any objects and movement of objects only depend
on interaction among objects. This environment is adapted from Kipf et al. (2019). In the training
environment, the radius of each ball is 3.In OOD settings, we changed the radius to 4 ( validation)
and 2 (OOD test).

In all the 8 Atari games belong to the same collections of 2600 games from Atari Corporation.We
used the games adapted to OpenAI gym environment. There are several versions of the same game
available in OpenAI gym. We used version "Deterministic-v0" starting at warm start frame 50
for each game for training. Version "Frameskip-v0" starting at frame 250 as OOD validation and
"Frameskip-v4" starting at frame 150 at OOD test.

In all the GNN compositional reasoning experiments. HITS at RANK K (K=1 in this study) was used
as as the metrics for performance.This binary score is 1 for a particular example if the predicted state
representation is in the k-nearest neighbor set around the true observation. Otherwise this score is 0.
MEAN RECIPROCAL RANK (MRR) is also used as a performance metrics, which is defined as
MRR = 1

N

∑N
n=1

1
Rankn

where rankn is the rank of the n-th sample (Kipf et al. (2019)).

In adding task, gap length of 500 was used for training and gap length of 200 (OOD validation)
and 1000 (OOD testing) are used for OOD settings. In sequential MNIST experiment , model was
trained at 14X14 resolution and tested in different resolutions (Goyal et al. (2019)). Sort-of-Clevr
experiments are conducted in the same way as Goyal et al. (2021b)

E.2 Model Architecture, Hyperparameters and Training Details

DVNC implementation details In DVNC, codebook e ∈ RL×m was initialized by applying K-
means clustering on training data points (s) where the number of clusters is L. The nearest ej ,by
Euclidean distance ,is assigned to each si. The commitment loss β

∑G
i ||si − sg(eoi)||22 , which

encourages si stay close to the chosen codebook vector, and the task loss are back-propagated to each
of the model components that send information in the inter-component communication process.The
gradient of task loss are back-propagated to each of the components that send information using
straight-through gradient estimator. The codebook loss

∑G
i || sg(si) − eoi ||2 that encourages the

selected codebook vector to stay close to si is back-propagated to the selected codebook vector.
Task loss is not backpropagated to codebook vectors. Only the task loss is back-propagated to the
model component that receives the information. It is worth pointing out that in this study, we train
the codebook vectors directly using gradient descent instead of using exponential moving average
updates as in Oord et al. (2017).

Model architecture, hyperparameters and training settings of GNN used in this study are same
as in Kipf et al. (2019), where encoder dimension is 4 and number of object slot is 3..Model
architecture, hyperparameters and training settings of RIMs used in this study are identify to Goyal
et al. (2019),where 6 RIM units and k=4 are used. Model architecture, hyperparameters and training
settings of transformer models are the same as in Goyal et al. (2021b), except that we did not
include shared workspace. Hyperparameters of GNN and RIM models are summarized in table 4.
Hyperparameters of transformers with various settings can be found in Goyal et al. (2021b). In all the
models mentioned above,we include discretization of communication in DVNC and keep other parts
of the model unchanged.

Data are split into training set, validation set and test set, the ratio varies among different tasks
depending on data availability.For in-distribution performance, validation set has the same distribution
as training set. In OOD task, one of the OOD setting,eg. certain number of blocks in 2D shape
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(a) 2D Shapes (b) Three-body

(c) Atari Games

(d) Sort-of-Clevr

Figure 7: Examples of different task environments. Atari game screen shots are obtained from
OpenAI gym platform. Sort-of-Clevr example was adapted from Goyal et al. (2021b) with permission
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Table 4: Hyperparameters used for GNN and RIMs
GNN model RIMs model

Hyperparameters Values Hyperparameters Values
Batch size 1024 Batch size 64
hidden dim 512 hidden dim 300
embedding-dim 512/G embedding-dim 300/G
codebook_loss_weight 1 codebook_loss_weight 0.25
Max. number of epochs 200 Max. number of epochs 100
Number of slots(objects) 5 learning-rate 0.001
learning-rate 5.00E-04 Optimizer Adam
Optimizer Adam Number of Units (RIMs) 6

Number of active RIMs 4
RIM unit type LSTM
dropout 0.5
gradient clipping 1

experiment, is used as validation set. The OOD setting used for validation was not included in test
set.

E.3 Computational resources

GPU nodes on university cluster are used. GNN training takes 3 hrs for each task with each
hyperparameter setting on Tesla GPU. Training of RIMs and transformers take about 12 hours
on the same GPU for each task. In total, the whole training progress of all models, all tasks, all
hyperparameter settings takes approximately 800 hours on GPU nodes.
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